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The flow of a liquid in a plane channel on the bottom of which a specified temperature distribution is maintained while the free 
surface is thermally isolated is considered. The surface tension of the liquid depends quadratically on the temperature. The system 
of Navier-Stokes and heat conduction equations possess a self-similar solution which leads to the non-linear eigenvalue problem 
of finding the flow temperature fields in the channel. The spectrum of this problem is investigated analytically for low Marangoni 
numbers (the second approximation) and numerically in the limiting case of an ideally heat conducting liquid for any Marangoni 
number. The pattern of the thermocapillary flow in the layer is analysed as a function of the parameter values. The non-uaiqueness 
of the solution, which is typical for problems of this kind, is established. The results are compared with those obtained previously 
in the first approximation with respect to the Marangoni number. © 1997 Elsevier Science Ltd. All rights reserved. 

Capillary effects under conditions of low or compensated gravity constitute a class of phenomena which 
have attracted the attention of many investigators [1]. The growing of crystals and the creation of 
composites with new properties at low gravity and the preparation of ultrapure metals and glasses in 
space by the thermocapillary deposition of drops and bubbles of an extraneous phase represent a far 
from complete list of the applications of the effects considered. The temperature dependence of the 
surface tension is one of the important factors which determine the diversity of the dynamics of the 
interfacial surface when there is a non-uniform temperature field in a system. 

The problem of the thermocapillary convection of a weightless liquid in a plane layer with a free 
thermally isolated surface which is heated from the bottom has previously been considered in [2] using 
the Navier--Stokes equations when the surface tension depends quadratically on the temperature. By 
separation of the wariables, a two-point boundary-value problem was obtained which describes the motion 
of the liquid and the temperature distribution in the layer. The spectrum of this problem is investigated 
below. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M .  I N I T I A L  E Q U A T I O N S  

Suppose that a viscous incompressible and weightless liquid forms a plane horizontal layer of thickness 
H on a solid non-uniformly heated surface with a temperature distribution T = To + AX, where To and 
A are constants and X is a horizontal coordinate. The origin of the Cartesian system of coordinates 
X O Y  (Y is the vertical coordinate measured from the base, transverse to the layer) is placed at a point 
on the base of the layer at a temperature T 0. The free surface of the layer is thermally isolated and the 
surface tension in it depends quadratically on the temperature as given by o(7) = o0 + 1/2tx(T - To) 2, 
where o0 and c~ are constants. Values of tz > 0 (tz < 0) correspond to a parabolic dependence of o(T) 
with a local minimum (maximum). Steady flow in the layer, which corresponds to the balance between 
the tangential thermocapillary stresses and the viscous stresses on the free surface, is described by the 
system of equations and boundary conditions 

(vV)v=-p-IVp+ vVZv, d i v v = 0  

(vV)T = zV2T 

v=(u,  v ), V =(3I~X, ~I~Y) (1.1) 
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Y=0, u=0,  v =O, T= To + AX 

Y = H ,  v = 0 ,  OT/OY=O, vpOu/OY=3t~lOX=ot(T-To)OT/3X 

Here p, p and v are the density, pressure and velocity (the components along the X and Y axes are 
u and v, respectively), v is the kinematic viscosity and X is the thermal diffusivity of the liquid. 

Changing to dimensionless coordinates (x = X/Hay = Y/H) and introducing the dimensionless stream 
function x¥(y), temperature x0(y) and pressure k,: + f0'), using the relations 

v V 
u = - - x ~ ' ( y ) ,  v = -  V(Y), 

n 

p v 2 
P = Po - [ ~  + f(Y)l 

T = T O + AHxO(y) 

wherep0 is the pressure at the origin of coordinates and L is a pressure coefficient, system (1.1) reduces 
[2] to the non-linear two-point boundary-value problem 

~/" + ~ / #  -- ¥ ' 2  + ~, _-- 0 (1.2) 

0"  - P r ( ~ ' 0  - ¥ 0 ' )  = 0 (1.3) 

y=O, W=0, V '=0,  0=1 
(1.4) 

y = l ,  V=0,  ~I/"=mH 02, 0 ' = 0  

for determining the unknown functions W(Y), 00') (flY) = vE(Y) + 2~lg(Y)). 
Here Pr = v/z and mn = ovI2H3/(pv 2) are the Prandtl and Marangoni numbers, which are the para- 

meters of the problem, while the coefficient ~, plays the part of an eigenvalue. 
The boundary-value problem (1.2)-(1.4) has been investigated [2] by the method of small perturbations 

in the limiting case when mn --~ 0, ~. ~ 0, and the corresponding asymptotic form of the spectrum ~, = 
~,(mH, Pr) was obtained in the form 

~, = - ~ m  n ( 1 . 5 )  

where, in the first approximation with respect to the Marangoni number, neither the asymptotic form 
itself nor the velocity field in the layer depend on the Prandtl number. 

2. THE SECOND APPROXIMATION IN THE MARANGONI NUMBER 

The expansions of the functions ¥, 0, land the eigenvalue ~, in series in mH, apart from terms o(m2), 
have the form 

= m H ~  ! + m 2 ~ 2 ,  0 = 1 + mn01 + m202 

m 2 # , ~, = mn~, I + m2~,2 f = mnfl + Ha2 

Here [2] 

2 Pr 3(4 "~ 
~1/, = ~ - ( y - 1 ) ,  O, = - ~ y  ~-~-y)  

~ =y  y - 1  , Z~ 2 

(2.1) 

In the case of the second approximation, the boundary-value problem has the form 
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### # r  • 2 
W2 + Xl/I¥1 - ~I + ~'2 = O, f2 = ~2 + 2W [ (2.2) 

0 [ ' - r ' r ( v i 0 1  + W [  - V~0D = 0 (2.3) 

y=O: W2 =0, ~ = 0 ,  02=0 (2.4) 

y=l :  ~2 =0, ~ '=201 ,  0~=0 (2.5) 

Using (2.1), we obtain 

,,, 3 4 y3 y2 
W2 =T~Y -"~-+"~--L2 

Integrating this relation taking into account the first two boundary conditions of (2.4), we find 

y7 y6 y5 ~2 y3 + Ci . 2 
• 2 = 112---0 48--0 ÷ 480 6 "2-Y 

Acting similarly, from (2.3) we obtain 

Pr s Pr 4 y6 y5 4 ,, P_~ _ _  + Y ~'2 . 2 + Cly 
0 2 = p  r _ y6+.~y ,...~y + 1 6 0 8 0  ~ - " 2 - Y  : 

whence, after integration and using the third boundary condition of (2.4), it follows that 

02=Pr/_. Pr y8+ Pr 7 Pr 6 y8 y7 ~ ~'z 4+CI.3+AIy I 
[, 3584 1- '~ y - 1 - ~  y + 89603360  ~ 28802"4"Y 6 y 

To find the unknown coefficients C1 andA1 and the eigenvalue L2, we have three boundary conditions 
(2.5) which give a linear system, the solution of which is 

Pr 2 Pr 19 Pr 5 
Al=8-- ~ ,  C t = - - +  ~ ,2=- -+  48 3360" 16 224 

Hence, the functions ¥2, 02, f2 of the second approximation take the form 
7 6 .~ 3 (  19]y2 Y Y----e y =(pr+5)Y+ Pr+ 

W2 =1120 480 480 k 14J96 k 70J96 

02=Pr[¢Pr l ~ ¢ l _ y )  y2 _ ¢ p r _ l )  y6 _(Pr+l_~ ) y4 
L \ 2  5 ) L 3 8 J 2 2 4  \ 2 J l - ~  384 + 

+ 
/uy zlsl~j ~4u 

'2=Y~--~(Y-I'2+(Y~----~ -y+lly4~ -~)-'~" (~,Pr+~5 ]Y214j'i"6 (Pr+ 19"~ Y 
- + t .  

For the eigenvalue, we obtain 

~,=--~mn ( 14,,, to 
It is clear that, ill the second approximation with respect to the Marangoni number but unlike the 

first approximation, the flow and temperature fields in the channel as well as the pressure coefficient 
now depend on the Prandtl number, that is, the flow field and the heat transfer process in the layer 

become interdependent. 
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3. N U M E R I C A L  I N T E G R A T I O N  

An algorithm for the numerical analysis of system (1.2)-(1.4) for any values of the Marangoni number 
mn is proposed below. Reduction of the above-mentioned boundary-value problem to a Cauchy problem 
(a problem with initial data) is the principal method of investigation. 

We shall restrict the treatment to the limiting case of an ideal heat-conducting liquid: Pr = 0. In the 
hmit being considered, the thermal and hydrodynamic aspects of the problem are "uncoupled". In fact, 
it follows from Eq. (1.3) that 0" = 0, from which, after satisfying the "thermal" boundary conditions in 
(1.4), we find that 0 = 1, so that the flow of the liquid has no effect on the temperature distribution in 
it and the temperature profile maintained at the bottom propagates without distortions across the layer. 

To determine the flow field, we obtain the boundary-value problem 

~ " + W "  = W'2 + Z,= 0 

y=O: ~ = 0 ,  ~ ' = 0  

y = l :  ~l/=O, ~t".=mtt 

(3.1) 

The differential equation in (3.1) is subject to the action of a linear group of transformations ¥0') 
 Ov) [3] 

V = B`/'~, y = B`/2y (3.2) 

where B ~ 0 is a transformation parameter, and )'1 and ~/2 are exponents which are as yet unknown. 
The transformed equation has the form 

~,,, + B`/i + ` /2~-  _ B`/i +`/'/2 ~ t 2  "t" n -`/I +3"/2 ~, = 0 

By requiring it to be invariant under the transformation parameter B, we find that T1 = -~2 = "~ SO 
that 

where ~, = B--4~ is a modified eigenvalue. 
The boundary conditions at the first point do not change as a result of transformation (3.2): y = 0, 
= 0, ~" = 0. The condition on the second derivative ~ "  is obviously an insufficient initial condition 

when ~ = 0. To obtain this condition, we require that the equality ~g'(0) = B must be satisfied (the 
insufficient initial value before the transformation is equal to the transformation parameter B). After 
(3.2) has been carried out, this gives B3`/~"(0) = B. On requiring invariance with respect to B in 
this case also, we find that " /=  1/3, as a result of which the required initial condition takes the form 
~"(0) = 1. 

The form of the boundary conditions (3.1) at the terminal policyy = 1, after the transformation (3.2), 
is 

"~(B ~)  = O, ~"(B ~)  = m n I B (3.3) 

The actions which have been described enable us to present the following scheme for constructing 
the spectrum ~ = k(mn, 0) of the boundary-value problem (3.1). The value X E (-oo, +~0) of the modified 
pressure coefficient is specified and the Cauchy problem 

o 
(3.4) 

~(0) =0,  W'(0) = 0, ~"(0)  = 1 

is integrated until the condition ~ = 0 is met. Suppose that this occurs at a certain value of the argument 
Y = Y0. By the first condition of (3.3), we obtain from this the value of the transformation parameter: 
Yo = B1/3, B = y-g. Next, using the second derivative of the solution of problem (3.4) at this point, we 
find the value of the Marangoni number mn = B~"(yo) = fft"(yo)y~. Finally, we obtain the eigenvalue 
of the initial problem (3.1) in the form ~. = n 4 ~  = ~,~-4. 



The flow pattern in a liquid layer and the spectrum of the boundary-value problem 1003 

X-(-**,~,,) / 

0 .¢ 

Fig. 1. 

Note that the possibility that the rooty0 of the equation ~(y--) = 0 may be non-unique has been taken 
into account in the implementation of the algorithm. Moreover, since the transformation parameter 
B can be of either sign, the initial problem (3.4) must be integrated separately in the domains ~ e [0, 
+**) and y- ~ (--**, 0]. 

The behaviour of the function ~07) when ~ e [0, +oo) is shown schematically in Fig. 1 as a function 
of the modified prc;ssure coefficient ~. It is clear that, in the interval ~, e (~., +o0) ~ .  E (0.75667; 
0.75668)), there are two roots y0/ (i = 1, 2) of the equation ~(y--) -- 0 (apart from the initial value~ = 
0) with different signs of ~'0S0/) which generate the corresponding branches of the spectrum ~, = ~,(rn~t, 
0) for negative 0~01) and positive @o2) Marangoni numbers. The function ~(y'-) has no zeros in the interval 

e (--.o, ~..) when~ ~ (0, +0-). In the limiting case when ~. ~ +**, it can be approximated in the right- 
hand neighbourhood of the point ~- = 0 by the cubic curve t0(y-) = -~.y3/6 + ~-2/2 which givesy-01 - 3/~, 
~, - 81/~ 3, mtt - -54 ~3, that is, kin, -~ 0 -3/2mu and corresponds to the asymptotic form (1.5) found 
in [2] when mtt < 0 (branch 1 in Fig. 3). 

When~ ~ (--~, 0), the equation ~07) = 0 has a unique rooty0 for any value of the modified pressure 
coefficient ~, e (--**, +.o), where ~"070) < 0, mtt > 0. The behaviour of the function ~(y-) in this case 
is shown schematic~dly in Fig. 2. Values of ~, ~> 0 together with the root Y02 (see above) give branch 2 
of the curve ~(m~/, 0) which corresponds to positive Marangoni numbers. Values of ~, < 0 generate 
branch 3 of the spectrum when rnH > 0, one of the ends of which corresponds to the asymptotic form 
(1.5) while the othc;r, when ~, --4 0 - 0, tends to the asymptotic form common with branch 2 when 
lg mh, ---- 3.0582. 

The spectrum ~,(mH, 0) which was constructed numerically is shown schematically in Fig. 3 in 
logarithmic coordinates. The same dependence in (m~/, k) coordinates is presented in the upper part 
of Fig. 3. Comparison of the numerical results obtained and the results of asymptotic theory [2], when 
rn~t ~ 0, k ~ 0 in the case of the function ~g(y) = ff2~,(y--) which characterizes the longitudinal 
component u of the velocity of the liquid in the layer when mtt ~ -5.4046 x 10 -11, ~, = 8.1061 x 10 -11 
(~. = 104, branch 1), shows that the relative deviation of the calculated profile from the asymptotic profile 
for the chosen value of the Marangoni number does not exceed 0.1%. The component u is distinguished 
from ~(y)  by the factor xv/H so that, in vertical cross-sections of the layer, which are equidistant from 
the plane x = 0, which is the stream surface, the profiles of the velocity u have mirror symmetry. 

p, 

X'Xr 

Fig. 2. 
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One of the characteristic features of non-linear problems of the type considered is the non-uniqueness 
of the solution, the possibility of which has been discussed in [2] by the analogy between bbundary- 
value problem (1.2)-(1.4) and the problem investigated numerically in [4], where the flow of a liquid 
in plane and cylindrical channels with walls which experience a linear extension with constant velocity 
was considered. It was established in [4] that from one to three values of the pressure coefficient may 
correspond to a fixed value of the Reynolds number and, in the axially symmetric case, there may be 
no solution at all over a certain range of Reynolds numbers. 

It has been established above that the spectrum ~. (mH, 0) of problem (3.1) possesses similar properties. 
In particular, along branch 1 (mH < 0) there are at most two solutions over the range of modified 
eigenvalues which has been considered ~. ~ (0.75668; 104) (~. = 6.9111 x 10 xl, mH = --0.13553 correspond 
to the first value close to ~,. and ~. ~- 8.1061 x 10 -11, m H = -5.4046 x 10 -11 to the second value, so that 
the representative point actually lies on the asymptote (1.5), that is, the dashed line in Fig. 3). In the 
case of negative values of  the Marangoni number with a sufficiently high modulus (lg I m/~ I ~ 1.685), 
the boundary-value problem (3.1) does not have solutions for any values of k whatsoever, which physically 
means that it is impossible to achieve steady flow conditions. 

Along branches 2 and 3 (mH > 0) there are from one to three values of the eigenvalue k which 
correspond to a fixed value of the Marangoni number (there is one solution on branch 3). A segment 
of branch 2 with a non-unique solution is shown on an enlarged scale in Fig. 3. We also note that there 
are at least two solutions with a zero eigenvalue: one corresponds to the asymptotic form (1.5), mH = 
0, while the second corresponds to the Marangoni number mH = 1143.3 (the common vertical asymptote 
of  branches 2 and 3). 

4. T H E  F L O W  P A T T E R N  

Data on the nature of the circulation of the liquid which occurs in the layer as a result of the action 
of thermocapillary forces are shown in Fig. 4. The profiles of the horizontal component of the velocity 
are shown for a number of distinctive points of the spectrum 7¢ (mH, 0) (the values of the function 
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~'(Y) = ~0')/(m_axy,_-- [0,1! ~'(Y)) are plotted along the abscissa). Curve 1 in Fig. 4(a) corresponds to point 
A on branch 1 (~, = 0.78; m H < 0). A reverse flow in the layer occurs approximately in the middle of 
its depth and the maximum velocities in opposite directions are close in magnitude. Velocity profiles, 
corresponding to two solutions in the case of a zero eigenvalue: the limiting profile from [2] when k --> 
O, mH ~ 0 (curve 2) and the profile corresponding to the limiting position of point B in Fig. 3: ~. = 0, 
m H = 1143.3 (curve 3) are also compared in Fig. 4(a). The dynamics of the change in the flow pattern 
accompanying motion along branch 2 (mH > 0) is represented by curves 1--4 in Fig. 4(b) which 
correspond to the points C, D, E and F (~.- = 10~; 1.2; 0.9; 0.76). The most interesting feature is the 
emergence of a "three-layer sandwich" structure in the flow as m H increases and the tendency for the 
liquid near the free surface to be accelerated by the surface tension forces relative to its more slowly 
moving internal layers when mH --> + ~ .  

In concluding, we note that, by using the procedure of continuation with respect to a parameter [3], 
with the Prandtl number appearing as this parameter in the problem being considered, it is possible to 
trace the evolution of the spectrum ~. (mH, 0) for non-zero values of Pr when the thermal and 
hydrodynamic fields interact in a more complex manner according to the complete system (1.2)-(1.4). 
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